
© Fraunhofer IESE 

OVERTURE
AN INTRODUCTION CONSERTS

Andreas Schmidt

@ Dependable Systems and Software Chair – Jan. 18th 2022

public1



© Fraunhofer IESE 

Motivation

 Safety Assurance in Cyber-Physical Systems is impeded by

 Increasing complexity of systems of systems

 Increasing variability in terms of operating modes and collaboration groups

 Runtime Monitoring allows to assure certain properties during operation, based on pre-assured 
components

 Creation of Runtime Monitors should be as automated as possible – avoiding the introduction of 
development faults

public2



© Fraunhofer IESE 

AGENDA

 Conditional Safety Certificates (ConSerts)

 Implementation

 Services & Dimensions

 Safety Evaluation

 Deployment Targets and Framework

 Evaluation & Discussion

public3



© Fraunhofer IESE 

Safety Engineering with ConSerts

public4

 Domain Engineers define Ontology / Type System

 Safety Engineers derive ConSerts from Assurance Process

 ConSerts are used for

 Composition- (aka Compile-) Time Assurance
Can systems conceptually collaborate?

 Run-Time Assurance
what can systems do safely right now



© Fraunhofer IESE 

Conditional Safety Certificates (ConSerts)

public5

 Methodology-wise derived from Assurance Cases

 Model-Based Approach to specify

 Success Trees for System-Local Behaviour and Provided Guarantees

 Demand-Guarantee Relations between Collaborating Systems

 Collaborations and Adaptations assured conditionally at design-time

 Conditions monitored and evaluated at run-time

 Approach technically suited to also model quality properties that are not safety



© Fraunhofer IESE 

End-to-End Safety Engineering with ConSerts

 Execute Model-Based Safety Engineering to identify:

 Safety Properties that can only be assured collaboratively
One system guarantees another system‘s demand

 Exported ConSerts Model File serves as input to conserts-rs

 Rust-based Command-Line Tool

 compile turns ConSert models into executable Rust-based monitoring code

 compose takes several ConSerts and checks if they can be composed safely

 Automating this process integrates well with Continuous Delivery for Safety-Critical Software1

1 Marc Zeller, Daniel Ratiu, Martin Rothfelder, and Frank Buschmann. An industrial roadmap for continuous delivery of software for safety-critical systems. 
In 39th International Conference on Computer Safety, Reliability and Security (SAFECOMP), Position Paper, 2020.

public7



© Fraunhofer IESE 

ConSert Services

 When formalizing, we consider Services as provided/required by 
individual systems

 Services have a type and multiple services can be composed if they 
have the same type

 Provided Service

 Type

 Guarantees

 Required Service

 Type

 Demands

public8



© Fraunhofer IESE 

ConSert Dimensions

public9

- id: ExampleGuarantee
dimension:
Numeric: 
type: UnoccupiedTime
covered:
- Inclusive:

start: 0.0
end: 1.48

subset: Demand
uom: second



© Fraunhofer IESE 

ConSert Composition

 Start with an empty System-of-Systems

 While adding a ConSert:

 Check for all required services if there are matching provided services

 Check for each demand in a required service if at least one matching guarantee is present

 Matching is defined as dimensions musts match

 Binary, Categorical, Numerical

 If Categorical / Numerical, considered Subset relationship and covered set

public10



© Fraunhofer IESE 

Implementation | Safety Evaluation

public11



© Fraunhofer IESE 

Deployment | Embedded System with rtic.rs

public12

https://rtic.rs/


© Fraunhofer IESE 

Deployment | ROS & C++

public13

 ROS is popular in both academia and industry

 Foreign-Function Interfaces (FFI) to C++ allow for 
high flexibility in terms of application context

 Both deployment variants can be auto-generated



© Fraunhofer IESE 

Safety Evaluation Performance

 Measuring inference latency (WCET), aka „how many cycles are taken to compute guarantee value“.

 Nordic Semiconductor nRF52840, 64MHz Arm Cortex-M4 FPU, 1MB Flash, 256 KB RAM

 No chip for safety-critical domain, but CPU & memory specification is comparable

 For realisitic ConSert size of 50 evidence (other values in paper confirm linear relationship):

 Monitor Cycling Time: 92.92us (store current, apply majority vote over history)

 Guarantee Evaluation Time: 3.22us (evaluate boolean logic)

 In summary: additional monitoring meets real-time constraints and adds only little latency.

public14

https://www.nordicsemi.com/Products/nRF52840

https://www.nordicsemi.com/Products/nRF52840


© Fraunhofer IESE 

Code Review Complexity

 Manual review of the auto-generated code is one option we consider

 Review must be feasible, i.e. code should be comprehensible

 We consider lines of code (LoC) as most lines generated by conserts-rs are rather straightforward

 Code consists of (a) static infrastructure (monitor) and (b) dynamic ConSert-dependent code

 Static code accounts for 150 LoC, most of it is infrastructure without logic

 Dynamic code accounts for: 18 LoC per runtime property, 7 LoC per monitored evidence/demand, 
1 LoC per gate and 1 LoC per evidence in evaluation tree, 4 LoC per guarantee

 In summary, a 50 evidence ConSert yields approx. 1500 LoC that are still feasible to review.

public15



© Fraunhofer IESE 

Correctness & the Rust Programming Language

 Correctness of Code generation must be proved – several components must be qualified

 1. Code-Generation Logic (conserts-rs)

 Mapping from Boolean trees to monitor code can be verified formally or via test kit

 Small size of ConSert models allows for manual code review

 2. Rust Compiler

 No certified compiler yet

 Ferrocene1 promises to solve that until end of 2022 for ISO 26262 ASIL B

 ConSert model validation (code-gen input) is executed via well-known safety assurance processes

public16

1 https://ferrous-systems.com/ferrocene/

https://ferrous-systems.com/ferrocene/


© Fraunhofer IESE 

Outlook

 Openly publish

 Opus: The Book of ConSerts (handbook-style documentation for ConSerts)

 conserts-rs (Rust-based library and CLI to work with ConSerts)

public17



© Fraunhofer IESE 

Summary

public18

HARA & 

FMEA & 

Assurance Case


	Overture�An Introduction Conserts
	Motivation
	Agenda
	Safety Engineering with ConSerts
	Conditional Safety Certificates (ConSerts)
	End-to-End Safety Engineering with ConSerts
	ConSert Services
	ConSert Dimensions
	ConSert Composition
	Implementation | Safety Evaluation
	Deployment | Embedded System with rtic.rs
	Deployment | ROS & C++
	Safety Evaluation Performance
	Code Review Complexity
	Correctness & the Rust Programming Language
	Outlook
	Summary

