OVERTURE

AN INTRODUCTION CONSERTS

Andreas Schmidt
@ Dependable Systems and Software Chair — Jan. 18th 2022

~ Fraunhofer

|ESE

Motivation

M Safety Assurance in Cyber-Physical Systems is impeded by
Increasing complexity of systems of systems

Increasing variability in terms of operating modes and collaboration groups

B Runtime Monitoring allows to assure certain properties during operation, based on pre-assured
components

® Creation of Runtime Monitors should be as automated as possible — avoiding the introduction of
development faults

\

~ Fraunhofer

IESE

AGENDA

® Conditional Safety Certificates (ConSerts)

B Implementation
Services & Dimensions
Safety Evaluation

Deployment Targets and Framework

B Evaluation & Discussion

\

~ Fraunhofer

IESE

Safety Engineering with ConSerts

B Domain Engineers define Ontology / Type System

M Safety Engineers derive ConSerts from Assurance Process

B ConSerts are used for

Composition- (aka Compile-) Time Assurance

Run-Time Assurance

8

Novel State of the
Approaches ~Art/ Practice

Domain
Engineer
(Plattform 14.0)

8

Use
S
Architecture Requirements | Enj \gineerin g HARA % Right Side of v
Analysis Analysis | Process @ %

Safety G,
Safety Analysis 2,
Engineer Derive Safety
Concepts and
(Alpha Inc.) Assurance Case
Derive
ConSerts
F(2)
Safety
Engineer ODE /DDI @

(Beta GmbH)

8__

Product
Developer
(Gamma AG)

Package
Submodel Submodel: ConSert into AASX

Submodel; Consert

8

Production
Planner
(Delta GmbH)

Q-

Operator

(Delta GmbH)

Run Time (BaSyx AAS) Submodel: Consert
Software: Consert Monitor
iguratign Time

econfiguratintime | [/ OperationTime
Dynamically
Compose
Conserts @

—4
N

Z Fraunhofer

IESE

Conditional Safety Certificates (ConSerts) Goaranioa)
SG4
o torns
I
B Methodology-wise derived from Assurance Cases g
AN
((Gate) ((Evidence))

RtES

)
: |
B Model-Based Approach to specify e
Success Trees for System-Local Behaviour and Provided Guarantees / \ o ane

Safety Engineer

Demand-Guarantee Relations between Collaborating Systems

((Evidence)) ((Evidence))

RtE3 RtE4

. Near Zone Approximation
Collaborations and Adaptations assured conditionally at design-time Unoccupied. Sped of
elecle jec

Conditions monitored and evaluated at run-time < im/s

B Approach technically suited to also model quality properties that are not safety

\

~ Fraunhofer

IESE

End-to-End Safety Engineering with ConSerts

Model-Based Derive ConSerts Export ConSerts Compile ConSerts
Safety Engineering Model Model File Runtime Crate

M Execute Model-Based Safety Engineering to identify:

Safety Properties that can only be assured collaboratively

B Exported ConSerts Model File serves as input to conserts-rs
Rust-based Command-Line Tool
compile turns ConSert models into executable Rust-based monitoring code

compose takes several ConSerts and checks if they can be composed safely

m Automating this process integrates well with Continuous Delivery for Safety-Critical Software’

' Marc Zeller, Daniel Ratiu, Martin Rothfelder, and Frank Buschmann. An industrial roadmap for continuous delivery of software for safety-critical systems.
In 39th International Conference on Computer Safety, Reliability and Security (SAFECOMP), Position Paper, 2020.

~ Fraunhofer

IESE

ConSert Services Bin-Picking
Application
<Required>
Picking
B When formalizing, we consider Services as provided/required by Q
individual systems <Provided>
Picking
M Services have a type and multiple services can be composed if they
have the same type Robot
<Required>
Environment
. . Occupation
B Provided Service
Type — T
G uara ntees <Provided> <Provided>
Environment Environment
Occupation Occupation
. . Scanner Camera
M Required Service
Type
Demands
—

~ Fraunhofer

IESE

ConSert Dimensions

id: ExampleGuarantee
dimension
Numeric
type: UnoccupiedTime
covered
Inclusive
start
end
subset: Demand

uom: second

<Demand> <Demand>

<Guarantee>

<Guarantee> <Guarantee>

<Demand>

9 public
© Fraunhofer IESE

\

~ Fraunhofer

IESE

ConSert Composition

M Start with an empty System-of-Systems

B While adding a ConSert:
Check for all required services if there are matching provided services

Check for each demand in a required service if at least one matching guarantee is present

B Matching is defined as dimensions musts match
Binary, Categorical, Numerical

If Categorical / Numerical, considered Subset relationship and covered set

\

~ Fraunhofer

IESE

Implementation | Safety Evaluation

((Guarantee))

SG4

Near Environment
Unoccupied
by Humans

1

({Gate))
&

AN

Installation
Approved by

Health and
Safety Engineer

((Evidence)) ((Evidence))
RtES3 RtiE4
MNear Zone Approximation
Unoccupied. Speed of

Detected Object
< 1m/s

({Gate)) ((Evidence))
RtES ——

use super::evidence::RuntimeEvidence;

[doc = "Near Environment Unoccupied by Humans"]
pub struct SG4;
impl SG4 {
pub fn evaluate (runtime_evidence: &RuntimeEvidence)
-> bool {
{
let c0 = {
#[doc = "Near Zone Unoccupied."
let c0 = runtime_evidence.RtE3;
#[doc = "Approximation Speed of
Detected Object <= 1lm/s"]
let ¢l = runtime evidence.RtE4;
cO || ¢l
bi
#[doc = "Installation Approved by Health

and Safety Engineer"]
let cl1 = runtime_evidence.RtE5;
cO && cl

~ Fraunhofer

IESE

Deployment | Embedded System with rtic.rs

use consert_edcc2021:: {properties::ix, «}; #[task (binds = RTCO, resources = [rtc 0, rtp,
velocity_sensor])]

#japp (device = t&!rget, pelnliohe;“ﬂ_if_? = true)] fn rtc{cx: rto: :Context) {

const APP: () = { use uom::si::{velocity::%, £64::Velocity};

struct Resources |

safe: bool, . _ let velocity =
rtp? propert?es::Runt}mePropertles, xCX.resources.velocity_sensor.sample () ;
monitor: monitor::Monitor, let rtp: &mut RuntimeProperties =
22 tmut *cx.resources.rtp;
i/ rtp.approximation_speed_of_detected_object =
#[task (resources = [safe, monitor, rtp])] ApproximationSpeedOfDetectedObject::KnownF
fn evaluate safety (B } Velocity::new: :<meter_per_second> (velocity));

cx: evaluate_safety::Context) ({

let resources = cx.resources;
// Move current sample to monitor
resources.monitor.add_sample (
rresources.rtp);
*resources.rtp = RuntimeProperties::unknown();

// Evaluate safety
let rte = resources.monitor.get_sample();
*resources.safe =
guarantees: :SG4::evaluate(&rte);

\

~ Fraunhofer

IESE

https://rtic.rs/

Deployment | ROS & C++ E: ji:tjstpn{aéigilshér, Subsc_r:L_ber};_

I L O A

pub struct RosMonitor |
pub rtp: Arc<AtomicCell<RuntimeProperties>>,
pub monitor: Monitor,
pub subscriptions: Vec<Subscriber>,
. . . . pub SG4: Publisher<msg::consert_edcc2021::5G4>,
M ROS is popular in both academia and industry pub SG5: Publisher<msg: :consert_edcc2021: :SG5>,
}

impl RosMonitor (|
M Foreign-Function Interfaces (FFI) to C++ allow for pub £n run_standalone (mut self,
high flexibility in terms of application context frequency: Frequency) {

let rate = rosrust::rate(
frequency.get::<hertz>());
while rosrust::is_ok () |
. let rte_sample = self.cycle();
B Both deployment variants can be auto-generated self.publish_all (srte_sample);
rate.sleep();
) o }
pub unsafe extern "C" fn Monitor_get_sample(pub fn cycle(imut se1f) -> RuntimeEvidence

ptr: +mut Monitor) -> *mut RuntimeEvidence { let rtp_sample = self.rtp.load();
self.rtp.store(RuntimeProperties: unknown());

let monitor = {

assert! (!ptr.is_null()); self.monitor.add_sample (rtp_sample);

smut *ptr self.monitor.get_sample ()
bi J
Box::into_raw (Box: :new(monitor.get_sample())) }

}
_——

~ Fraunhofer

IESE

Safety Evaluation Performance

®
N52840

QIAMMA
1650AE

1

B Measuring inference latency (WCET), aka ,,how many cycles are taken to compute guarantee value”.

B Nordic Semiconductor nRF52840, 64MHz Arm Cortex-M4 FPU, 1MB Flash, 256 KB RAM

No chip for safety-critical domain, but CPU & memory specification is comparable
B For realisitic ConSert size of 50 evidence (other values in paper confirm linear relationship).
Monitor Cycling Time: 92.92us (store current, apply majority vote over history)

Guarantee Evaluation Time: 3.22us (evaluate boolean logic)

B /n summary: additional monitoring meets real-time constraints and adds only little latency.

\

~ Fraunhofer

IESE

https://www.nordicsemi.com/Products/nRF52840

use super::evidence::RuntimeEvidence;

Code Review Complexity i g

impl SG4 {
pub fn evaluate (runtime_evidence: &RuntimeEvidence)
—> bool {
{
let cO0 = {

[doc = "Nea
let cO =1

[doc = "Installation Approved by Health
and Safety Engineer"]

Manual review of the auto-generated code is one option we consider It o1 - runtine_ovidence. Re55;

cO && cl
}
}

Review must be feasible, i.e. code should be comprehensible :
We consider lines of code (LoC) as most lines generated by conserts-rs are rather straightforward
Code consists of (a) static infrastructure (monitor) and (b) dynamic ConSert-dependent code

Static code accounts for 150 LoC, most of it is infrastructure without logic

Dynamic code accounts for: 18 LoC per runtime property, 7 LoC per monitored evidence/demand,
1 LoC per gate and 1 LoC per evidence in evaluation tree, 4 LoC per guarantee

In summary, a 50 evidence ConSert yields approx. 1500 LoC that are still feasible to review.

\

~ Fraunhofer

IESE

Correctness & the Rust Programming Language

M Correctness of Code generation must be proved — several components must be qualified
1. Code-Generation Logic (conserts-rs)
Mapping from Boolean trees to monitor code can be verified formally or via test kit
Small size of ConSert models allows for manual code review
2. Rust Compiler
No certified compiler yet
Ferrocene' promises to solve that until end of 2022 for ISO 26262 ASIL B

B ConSert model validation (code-gen input) is executed via well-known safety assurance processes

\

~ Fraunhofer

IESE

https://ferrous-systems.com/ferrocene/

Outlook

B Openly publish
Opus: The Book of ConSerts (handbook-style documentation for ConSerts)

conserts-rs (Rust-based library and CLI to work with ConSerts)

\

~ Fraunhofer

IESE

Summary

Model-Based

Safety Engineering

Derive

HARA &
FMEA &

Assurance Case

q

{(Evidence))
RtES3

Near Zone
Unoccupied.

({Evidence))
RtE4

Approximation
Speed of
Detected Object
< 1m/s

ConSerts Export ConSerts Compile ConSerts
Model Model File Runtime Crate
use consert_edcc2021::{properties::ix, =x};
((Guarantee>> #Taop (device = target perinherals = true)]
SG4 const APP: () = { _
Near Environment struct Resources {
Unoccupied safe: bool,
by Humans rtp: properties::RuntimeProperties,
T monitor: monitor::Monitor,
././
((Gate)))
s
/7l R\ #[task (resources = [safe, monitor, rtp])]
({GBIE)) {(Evidence)) fn evalua*]c-e_iafetzé(t -
cx: evaluate_safety::Context
| RiES | — —SeneHy
Installation let resources = cx.resources;
Approved by // Move current sample to monitor
H%m'@d resources.monitor.add_sample (
Safety Engineer .
x*resources.rtp);

*resources.rip =

RuntimeProperties::unknown();
// Evaluate safety
let rte = resources.monitor.get_sample();
*resources.safe =
guarantees::5G4::evaluate(&rte);

\

~ Fraunhofer

IESE

	Overture�An Introduction Conserts
	Motivation
	Agenda
	Safety Engineering with ConSerts
	Conditional Safety Certificates (ConSerts)
	End-to-End Safety Engineering with ConSerts
	ConSert Services
	ConSert Dimensions
	ConSert Composition
	Implementation | Safety Evaluation
	Deployment | Embedded System with rtic.rs
	Deployment | ROS & C++
	Safety Evaluation Performance
	Code Review Complexity
	Correctness & the Rust Programming Language
	Outlook
	Summary

