
© Fraunhofer IESE 

OVERTURE
AN INTRODUCTION CONSERTS

Andreas Schmidt

@ Dependable Systems and Software Chair – Jan. 18th 2022

public1



© Fraunhofer IESE 

Motivation

 Safety Assurance in Cyber-Physical Systems is impeded by

 Increasing complexity of systems of systems

 Increasing variability in terms of operating modes and collaboration groups

 Runtime Monitoring allows to assure certain properties during operation, based on pre-assured 
components

 Creation of Runtime Monitors should be as automated as possible – avoiding the introduction of 
development faults

public2



© Fraunhofer IESE 

AGENDA

 Conditional Safety Certificates (ConSerts)

 Implementation

 Services & Dimensions

 Safety Evaluation

 Deployment Targets and Framework

 Evaluation & Discussion

public3



© Fraunhofer IESE 

Safety Engineering with ConSerts

public4

 Domain Engineers define Ontology / Type System

 Safety Engineers derive ConSerts from Assurance Process

 ConSerts are used for

 Composition- (aka Compile-) Time Assurance
Can systems conceptually collaborate?

 Run-Time Assurance
what can systems do safely right now



© Fraunhofer IESE 

Conditional Safety Certificates (ConSerts)

public5

 Methodology-wise derived from Assurance Cases

 Model-Based Approach to specify

 Success Trees for System-Local Behaviour and Provided Guarantees

 Demand-Guarantee Relations between Collaborating Systems

 Collaborations and Adaptations assured conditionally at design-time

 Conditions monitored and evaluated at run-time

 Approach technically suited to also model quality properties that are not safety



© Fraunhofer IESE 

End-to-End Safety Engineering with ConSerts

 Execute Model-Based Safety Engineering to identify:

 Safety Properties that can only be assured collaboratively
One system guarantees another system‘s demand

 Exported ConSerts Model File serves as input to conserts-rs

 Rust-based Command-Line Tool

 compile turns ConSert models into executable Rust-based monitoring code

 compose takes several ConSerts and checks if they can be composed safely

 Automating this process integrates well with Continuous Delivery for Safety-Critical Software1

1 Marc Zeller, Daniel Ratiu, Martin Rothfelder, and Frank Buschmann. An industrial roadmap for continuous delivery of software for safety-critical systems. 
In 39th International Conference on Computer Safety, Reliability and Security (SAFECOMP), Position Paper, 2020.

public7



© Fraunhofer IESE 

ConSert Services

 When formalizing, we consider Services as provided/required by 
individual systems

 Services have a type and multiple services can be composed if they 
have the same type

 Provided Service

 Type

 Guarantees

 Required Service

 Type

 Demands

public8



© Fraunhofer IESE 

ConSert Dimensions

public9

- id: ExampleGuarantee
dimension:
Numeric: 
type: UnoccupiedTime
covered:
- Inclusive:

start: 0.0
end: 1.48

subset: Demand
uom: second



© Fraunhofer IESE 

ConSert Composition

 Start with an empty System-of-Systems

 While adding a ConSert:

 Check for all required services if there are matching provided services

 Check for each demand in a required service if at least one matching guarantee is present

 Matching is defined as dimensions musts match

 Binary, Categorical, Numerical

 If Categorical / Numerical, considered Subset relationship and covered set

public10



© Fraunhofer IESE 

Implementation | Safety Evaluation

public11



© Fraunhofer IESE 

Deployment | Embedded System with rtic.rs

public12

https://rtic.rs/


© Fraunhofer IESE 

Deployment | ROS & C++

public13

 ROS is popular in both academia and industry

 Foreign-Function Interfaces (FFI) to C++ allow for 
high flexibility in terms of application context

 Both deployment variants can be auto-generated



© Fraunhofer IESE 

Safety Evaluation Performance

 Measuring inference latency (WCET), aka „how many cycles are taken to compute guarantee value“.

 Nordic Semiconductor nRF52840, 64MHz Arm Cortex-M4 FPU, 1MB Flash, 256 KB RAM

 No chip for safety-critical domain, but CPU & memory specification is comparable

 For realisitic ConSert size of 50 evidence (other values in paper confirm linear relationship):

 Monitor Cycling Time: 92.92us (store current, apply majority vote over history)

 Guarantee Evaluation Time: 3.22us (evaluate boolean logic)

 In summary: additional monitoring meets real-time constraints and adds only little latency.

public14

https://www.nordicsemi.com/Products/nRF52840

https://www.nordicsemi.com/Products/nRF52840


© Fraunhofer IESE 

Code Review Complexity

 Manual review of the auto-generated code is one option we consider

 Review must be feasible, i.e. code should be comprehensible

 We consider lines of code (LoC) as most lines generated by conserts-rs are rather straightforward

 Code consists of (a) static infrastructure (monitor) and (b) dynamic ConSert-dependent code

 Static code accounts for 150 LoC, most of it is infrastructure without logic

 Dynamic code accounts for: 18 LoC per runtime property, 7 LoC per monitored evidence/demand, 
1 LoC per gate and 1 LoC per evidence in evaluation tree, 4 LoC per guarantee

 In summary, a 50 evidence ConSert yields approx. 1500 LoC that are still feasible to review.

public15



© Fraunhofer IESE 

Correctness & the Rust Programming Language

 Correctness of Code generation must be proved – several components must be qualified

 1. Code-Generation Logic (conserts-rs)

 Mapping from Boolean trees to monitor code can be verified formally or via test kit

 Small size of ConSert models allows for manual code review

 2. Rust Compiler

 No certified compiler yet

 Ferrocene1 promises to solve that until end of 2022 for ISO 26262 ASIL B

 ConSert model validation (code-gen input) is executed via well-known safety assurance processes

public16

1 https://ferrous-systems.com/ferrocene/

https://ferrous-systems.com/ferrocene/


© Fraunhofer IESE 

Outlook

 Openly publish

 Opus: The Book of ConSerts (handbook-style documentation for ConSerts)

 conserts-rs (Rust-based library and CLI to work with ConSerts)

public17



© Fraunhofer IESE 

Summary

public18

HARA & 

FMEA & 

Assurance Case


	Overture�An Introduction Conserts
	Motivation
	Agenda
	Safety Engineering with ConSerts
	Conditional Safety Certificates (ConSerts)
	End-to-End Safety Engineering with ConSerts
	ConSert Services
	ConSert Dimensions
	ConSert Composition
	Implementation | Safety Evaluation
	Deployment | Embedded System with rtic.rs
	Deployment | ROS & C++
	Safety Evaluation Performance
	Code Review Complexity
	Correctness & the Rust Programming Language
	Outlook
	Summary

