Matching Distributions under Structural
Constraints

Aaron Bies®, Holger Hermanns®, Maximilian A. K6hl®, and Andreas
Schmidt

Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
{bies ,hermanns,koehl,andreas. schmidt}@cs .uni-saarland.de

Abstract. Phase-type distributions, the probability distributions gen-
erated by the time to absorption in a continuous-time Markov chain, are
a popular tool for modeling time-dependent system behaviour. They are
well understood mathematically, and so is the problem of identifying a
matching distribution if given information about its moments, as well
as fitting to a given distribution or a set of distribution samples. This
paper looks at the problem of finding distributions from a structural
perspective, namely where system behaviour is known to have a specific
structure comprising parallelism, sequencing, and first-to-finish races. We
present a general method that, given the coarse system structure with
annotations regarding the moments of some fragments, finds a concrete
phase-type distribution that fulfils the specification, if one exists. We
develop the foundational underpinning in terms of constraint solving
with satifiability modulo theories, spell out the algorithmic details of a
divide-and-conquer solution approach, and provide empirical evidence of
feasibility, presenting a prototypical solution engine for structural distri-
bution matching.

1 Introduction

Continuous probability distributions are an important topic in statistics, stochas-
tics, and data science because they allow to model and analyze data that are
influenced by continuously varying quantities. This is particularly important for
real-world phenomena where the continuous variable of interest is time.

Phase-type distributions are a class of continuous probability distributions
that are often used in this context. A phase-type (PH) distribution can be
thought of as describing the time to absorption in an absorbing continuous-
time Markov chain (CTMC) if starting in its initial state at time zero. These
distributions have been proven effective in modelling many time-dependent sys-
tems, since they can, in principle, represent any distributions on the positive
axis with arbitrary precision [3], while the representation size is straightforward
to control.

The behaviour of PH distributions is well understood. Given a PH distri-
bution, one can compute the corresponding probability density function, cu-
mulative distribution function as well as any statistical moment using closed

https://orcid.org/0000-0002-3053-5175
https://orcid.org/0000-0002-2766-9615
https://orcid.org/0000-0003-2551-2814
https://orcid.org/0000-0002-7113-7376

AW N o=

0 N o w

11
12
13
14
15
16
17

2 A. Bies, H. Hermanns, M. Kohl, A. Schmidt

#lasync_std: :main]
async fn main() {

let dl = download_bytes("https://.../assets/orig.svg"); // X1
let d2 = download_bytes("https://.../assets/orig.png"); // X2
let d3 = download_bytes("https://.../assets/flat.png"); // X3
let d4 = async { // X4. X5
let text = download_text("https://.../assets/style.css").await; // X4
async_std::fs::write("style.css", &text).await.unwrap(); // X5
text
};
let image = dl.race(d2).race(d3); // X1 + X2 + X3
let (image_bytes, css_text) = image.join(d4).await; // oo 1] X4.X5

dbg! (image_bytes.len(), css_text.len());

Listing 1: An example program written in Rust

formulae. They are also composable, as they are closed under typical operations
on distributions such as minimum, maximum, convolution, and mixture.

Finding a phase-type distribution for certain data involves estimating the
parameters of the absorbing CTMC including its size, shape, and parameters.
There are a number of sophisticated algorithms for doing so, which come in two
flavors: They either fit to data points [1,9,10,14,23,21,4] available from sampling,
or aim at matching the moments [13,2,11,22,12] of the distribution. They usu-
ally aim at finding a PH distribution that resembles the observed behaviour as
accurately as possible, but is otherwise as small and simple as possible.

Now, when considering real-world applications of finding PH distributions,
we might have more than only some measured characteristics at hand — and this
is the twist we are considering worthwhile to investigate: In particular, we may
also have insights about the coarse structure of the system. This may refer to
the parallel or sequential nature of the program execution studied, together with
measurements that relate to fragments of this structure.

Motivating Fxample. Consider the program in Lst. 1, which is written in Rust us-
ing the async-std library. Here, the functions download_bytes and download_text
return futures (promises in other languages) that can be composed with each
other to create structural concurrency. race runs two futures in parallel and
outputs the result of the future that finished first. join runs two futures in par-
allel and returns both results, i.e., only finishes once both futures finish. After
downloading the stylesheet, we also write its content to a local file.

Now suppose we have benchmarked the program and determined that the
program takes 0.15 seconds to terminate on average. Additionally, we measured
that the style.css file only takes about 0.1 seconds to download and save. Using
these sparse measurements and our knowledge of the program structure, we
would like to construct a complete model for the execution time of this program.

https://crates.io/crates/async-std

Matching Distributions under Structural Constraints 3

This program can be abstractly expressed as

(X14+Xo+X3) | X4 X5]p=01]5=0.15

Here, we use some common process calculi operators {., +, || } for sequence,
choice, and parallelism, and ¥]|g—. to constrain the expected value for the
over-lined process ¥ to c¢. Choice and parallelism echo the Rust constructs race
and join, the variables X; to X4 represent the individual download durations,
and X5 represents the time it takes to store the file in the example.

We are not aware of methods that allow for such structural constraints to
be taken into account. This paper pioneers the consideration of structural con-
straints in finding phase-type distributions, and it does so focusing on moment
matching techniques. The paper develops the theory and algorithmic ingredients
to fill in small PH distributions for X7 to X5 so that altogether the constraints
present are satisfied. Using our prototype solver STRUMPH, we find that the ex-
ponential distribution Exp(3.25) for X; to X3, approximately Ezp(10.965) for
X4, and approximately Exp(113.655) for X; is a valid solution for this example.

Contribution. In this paper, we discuss the problem of finding a PH distribution
subject to a set of structural and moment constraints. We restrict to the first two
moments for the sake of simplicity, and need to only work with acyclic PH distri-
butions (APH). To do so, we assume that structural knowledge determining the
problem at hand is given in a formal language which we call CCCSAT—a variant
of the Ccc process calculus [20] that exploits the closure properties discussed
above. We discuss properties and transformations of CCCSAT problems that are
leveraged by a general semi-decision procedure. This procedure decomposes the
problem at hand in a divide-and-conquer manner and is guaranteed to find the
smallest APH solution, if one exists.

In short, the contribution of this paper is fourfold: a) We formalize the prob-
lem of moment matching under structural constraints as a CCCSAT problem.
b) We propose an approach for determining an APH distribution of smallest
possible size solving a CCCSAT problem. ¢) We present a prototypical imple-
mentation in the tool STRUMPH that embedds SMT solving into a problem
specific iterative procedure. d) We report on empirical evidence regarding the
practicality of the approach.

Organization of the Paper. In Sec. 2, we give related work and the mathematical
background, after which we introduce our CCCSAT calculus in Sec. 3. Techniques
to find constraint-satisfying variable assignments for CCCSAT expressions are
discussed in Sec. 4. Our implementation STRUMPH is used for evaluation in
Sec. 5. Finally, Sec. 6 concludes the paper and provides an outlook.

2 Preliminaries

Moments. For a (continuous) random variable X, characterized by probabil-
ity density function fx, the expected value of X (also called mean) is E(X) =

4 A. Bies, H. Hermanns, M. Kohl, A. Schmidt

fRJ;fX(x) dr, and its k-th moment is E(X*). The wvariance of X is V(X) =
E((X — E(X))?) = E(X?) — E(X)?, and the coefficient of variation cx is de-
fined as /V(X) / E(X).

Furthermore, if D is a probability distribution and X is a random variable
distributed according to D, then E[D] refers to E(X), and V[D] refers to V(X).
We say a distribution is Dirac if it assigns full probability to a single outcome.

Phase-Type Distributions. A Phase-Type Distribution [17], is a probability distri-
bution modeled by the time from start to absorption in an absorbing continuous-
time Markov chain (CTMC). In an absorbing CTMC, every state is either ab-
sorbing, meaning it has no outgoing transitions, or transient, in which case it
can reach an absorbing state. Note that an acyclic CTMC is always absorbing.

Definition 1. The (continuous) n-phase phase-type distribution PH (&, A) is
the distribution of the time-until-absorption in an (n+1)-state CTMC (S, R,)

with parameters
AA
T =(a,0), R= (7
7 = (a,0) (0 0)

where all but the last state are transient.

The tuple (&, A) is commonly referred to as the phase-type representation of the

associated PH distribution. The parameter n is called the order of the represen-

tation. A PH distribution is acyclic if it is represented by an acyclic CTMC.
These distributions are mathematically well-understood and easy to analyze.

Given an n-phase PH distribution PH (&, A), we can compute its

— cumulative distribution function (CDF) with F(t) =1 — dexp(t A) I,

probability density function (PDF) with f(¢) = @exp(t A) A,

— Laplace-Stieltjes transform (LST) with f(s) = @ny1 4+ @(sI — A)" A, and

— k-th moment with E(X*) = (—1)"k!@ AT (sce [18]).

Here exp(-) refers to the matrix exponential. We remark that the column vector
A can be computed from the n x n-matrix A since every row in R must sum to
zero. The set of (acyclic) phase-type distributions is closed under convolution,
minimum, maximum, and mixture (aka convex combination) [18].

Cozx & Convenience Calculus. To conveniently describe acyclic phase-type dis-
tributions (APH) in a structured manner, we recall the Cox & Convenience
Calculus (Ccc) [20] — a simple stochastic process calculus, spanned by all ex-
pressions that adhere to the following grammar!

PQel == (A) | WP | PQ | P+Q | P[Q

! Listed here in order of operator precedence, from highest to lowest. The three binary
operators are left-associative.

Matching Distributions under Structural Constraints 5

with rates A € Ry and g € R>g. Any CccC process P represents an acyclic
PH-distribution, formally denoted by PH(P). We refer to [20] for details of
the semantic mapping PH(-). The three binary operators sequence (.), choice
(+), and parallel (]|) correspond to the convolution, minimum, and maximum on
PH distribution respectively, exploiting the closure properties discussed above.
Intuitively, given processes P and @,

— P.Q) terminates once @ terminates which is started only after P terminates.

— P || @ terminates once the last of P and @ terminates, with both P and @
started at the same time.

— P+ @ terminates once the first of P and @ terminates, with both P and @
started at the same time.

The remaining two operators are used to model more primitive distributions,
where (\) stands for a simple exponential distribution, while the operator (u) <
(M) P (called the “Cox”-operator) assures completeness. It allows one to express
any possible Cox? distribution [6], and hence any possible APH distribution [20].
Practically speaking, the following distribution families can be encoded into Ccc
inductively, for n > 0. We will make use of their encodings in the sequel.

Exponential distribution: Exp(\) = ());

Erlang distribution: Erl(n + 1, A) = (A).Erl(n, A), and Erl(1, \) = (N\);

Hypoexponential distribution: Hypo(A1, R) = (A1).Hypo(R) where R is of
shape Mg, ..., Ay, and Hypo(\) = (A\);

Cox distribution: Cx([A1,p1], R) = ((1 —p1)A1) < (p1A1).Cx(R) where R is
of shape [Aa, pal, ..., [A—1,Pn-1]; An, and Cx(X) = (A).

Notably, choice (+) and parallel (]|) do not occur in the above encodings. They
are added for modeling convenience as they echo typical usage scenarios.

Related Work. Moment matching, the problem of finding a PH distribution with
a given set of moments, is well-explored. There have been too many contributions
to list here, but some we would like to highlight.

Johnson and Taaffe investigated the use of mixtures of Erlang distributions
of common order in the context of moment matching [13], showing among others
that, except for corner cases, this class of phase-type distributions can be used to
match the first k finite moments, for any choice of k. Asmussen et. al. developed
an extended version of the expectation-maximization algorithm to approximate
sampled data by phase-type distributions [1]. The paper [22] discusses minimal
representations and moment matching methods for Markovian Arrival Processes
(MAP), and [5] looks into similarity transformations and investigates represen-
tations maximizing the first joint moment of MAP. Building on those results, [4]

2 A Cox distribution PH (&, A) corresponds to an acyclic absorbing CTMC with bidi-
agonal A, Dirac «, and ascending (but negative) diagonal. Pictorially it can be seen
as a sequence of exponential distributions (like hypo-exponential distributions) of
decreasing rate with escape options to the absorbing state at each state. Any APH
distribution can be represented as a Cox distribution of equal order.

6 A. Bies, H. Hermanns, M. Kohl, A. Schmidt

presents a variation of the EM algorithm, for online estimation of the parameters
of PH distributions. Finally, for a summary of existing phase-type approximation
techniques, we would like to highlight the Bachelor’s thesis of Komarkové [15].

The above methods let us construct PH distributions that fulfill given mo-
ment constraints, but they do not allow for structural constraints to be taken into
account. We believe to be the first to explore PH distributions with structural
and moment constraints in this manner.

3 The Ccc Satisfiability Problem (CccSat)

In this section, we will formally define the problem statement of this paper. To
do so, we will first introduce CCCSAT, a derivative of the Ccc process calculus,
and define its semantics as well as a notion of satisfiability.

Syntaz. Based on the Ccc language, we define the following syntax.

Definition 2. Let P be a language defined by the following grammar
U, ¢ € P = X | Vg | VYly=e | @ | ¥+ | V|
where X € Var is a variable for some CcC process, and ¢ € R>q is a constant.

We will refer to an element of P as a CCCSAT problem instance or a problem for
short. While ¥]g_. will constrain the expected value of ¥ (thus E[¥]) to be c,
W]y —. will constrain the variance V[¥] to be ¢.?

Semantics. We define a constraint-oblivious semantics for CCCSAT problems,
assuming an assignment I assigning to each variable a specific CCC process.

Definition 3. Let I' € Var — L be an assignment. For problem instance ¥ € P,
we define [W]r as the CcC process acquired by the following substitutions.

— Variables are substituted, i.e., [X]|r = I'(X) for any X € Var.
— Constraint operators are dropped, i.e., [V] |r = [¥]r for any ¥ € P.
— Wod|r=[¥]ro[P]r for any W, ® € P andoc{., +, |}

By defining the semantics of P using the function [-Jp € P — L, many state-
ments that have been shown for Ccc processes and PH distributions are imme-
diately applicable to P. In particular, the semantics of the three binary operators
sequence (.), choice (4), and parallel (]|) are inherited from Ccc.

Satisfiability. The significance of the constraint operators that have been dis-
carded so far manifests in the following notion of satisfiability.

3 In all that follows, there will be no need to distinguish ¥|p—.|v—q from ¥|y—y4|p=c.

Matching Distributions under Structural Constraints 7

Definition 4. For a given problem ¥ € P and assignment I" € Var — L, we
say I' satisfies ¥, written as I' E ¥, if the following hold

r'ew E[PH(#]r)]=c

TEX I'E ¥lp=
T'Ew TE® r'ev V[PH([¥]r)]=c
TF'EWwod I'E¥ly—

with X € Var, problem instances ¥, P € P, and operators o € {., +, || }.

Ezample 1. Consider the problem instance ¥ € P defined as follows.

V= X+ X3|p—2 V:B‘E:S | X3|p=a.X4
By the definition above, the statement I' E ¥ expands to the following.

E[I(X))+T'(X2)]=5 A V[[(X1)+(X2)]=3
A E[[(X2)]=2 A E[I'(X5)]=4

Note that some variables, such as X; and X5, are constrained multiple times,
which will make solving for those variables harder. On the other hand, X3 can
be solved for independently, as it appears in just one constraint by itself. It is
easy to see that X, may be chosen arbitrarily, as it is completely unconstrained.

The goal of this paper is to develop techniques for finding an assignment I” for a
given problem instance ¥, such that I' E ¥, if one exists. We will see later that
our methods tend to find the simplest solution for a given problem instance. We
call a problem ¥ € P satisfiable, denoted by SAT(¥), if there is an assignment
I" such that I" F @. Otherwise we call ¥ unsatisfiable, denoted by UNSAT(¥).

4 Semi-Algorithm for Solving CccSat

Now that we have arrived at a formal problem statement, let us walk through
how we go about its solution, i.e., given a problem instance ¥ € P, we want
to find I' € Var — L, such that I" F ¥. Our approach is split up into three
stages: a) Immediately handle cases that can be solved analytically (Sec. 4.1).
b) Divide the problem (recursively) into smaller problems that can be solved
independently, if possible (Sec. 4.2). ¢) Solve the residual cases using an SMT
solver (Sec. 4.3).

4.1 Satisfying Simple Cases

First, we will cover some cases that can be solved analytically. In what follows,
we abuse notation and abbreviate the assignment that maps each variable on
the same constant process P just as P. We call a problem instance ¥ € P
unconstrained, if ¥ does not contain any constraint operator (7).

8 A. Bies, H. Hermanns, M. Kohl, A. Schmidt

Theorem 1. Let ¥ € P be unconstrained. This implies

1. I' EY where I' is arbitrary,
2. I'E Wlg—. where I' = (¢/c) and ¢ = E[[¥] 1], and

3. I'E Uly_q where I' = (ci/d) and d = V[[[W]](l)}.

The first statement is obvious in light of how F is defined. For the remaining
statements, it suffices to show that scaling all rates in a PH-representation scales
the moments accordingly. For the first case, our implementation defaults to the
constant assignment (1).

Remark 1. Special cases of Theorem 1 are the problems X|g—. and X|y—g4
respectively, where X € Var. These are well known to be solvable using expo-
nential distributions with rates A = 1/c and A = 1/+/d, which aligns with the
above theorems (since Exp(1) has a mean and variance of one).

The case X|g—.|v—q also has a well-known solution, which however we need to
spend some thought on. Recall the squared coefficient of variation ¢ = d/c?.
For ¢% > 0.5, we can solve it with a 2-phase Coxian distribution Cx([A1, p1], A2)
where A\; = 2/c, p1 = 1/2¢% and Ay = A\1p1, due to [16]. This gives us the Ccc
process mapping I'(X) = ((1 — p1)A1) < (p1A1)(A2). For ¢% < 0.5, we would
obtain p; > 1 however, which would result in negative rates, so an alternative
method is required.

A popular approach to create PH distributions with 0 < ¢x < 1 is using a
mixture of two Erlang distributions with identical rates and sizes differing by
one [24]. Yet, due to the absence of a mixture operator and of non-Dirac initial
distributions in Ccc, this solution cannot be expressed directly.

One way to handle this case is to instead prefix a 2-phase Coxian distribution
with an Erlang distribution, i.e. using Erl(k, A).Cx([A1,p1], A2). The idea is to
use an Erlang distribution to offset the coefficient of variation required for the
Coxian distribution, such that we can find it with the method outlined above.
For the parameters k£ and A of the Erlang distribution, we require that

d— & 1 k k d 1
)\2

- d> — = - < -

(C_§)2>2, vl c> 1 0<62<2

Due to the use of inequalities, there are infinitely many solutions. One possible

solution is to fix k = {%J and \ = 02’“_62 - The 2-phase Coxian distribution is

constructed as described above with mean ¢ — k/\ and variance d — k/\2. These
observations can be harvested by the following CccC constructions, which are
notable for being fully described by their size k£ and up to 4 rate parameters.

Definition 5. We define the class of Tailweight distributions as follows.

T’lU()\l) = ()\1)
Tw([As; A2]; A1) = (A3) < (A2) (A1)
Tw([k:,)\4], [/\37)\2}, /\1) = E?”l(k, /\4)(/\3) < ()\2)()\1)

Matching Distributions under Structural Constraints 9

The above recipe for problems of the form X|p_.|v—4 (where X € Var and
¢,d € Ry) indeed always constructs a Tailweight distribution.

Corollary 1. Ve,d € Ry. 3P € Tailweight. E[P] = cAV[P] =d.

4.2 Problem Decomposition

Next, we discuss how we can break large problem instances down into multiple
smaller problems that can be solved independently. Let o denote any binary
operator of P, i.e., 0 € {., +, || }. For ¥ € P, we define Vars(¥) as the set of
variables in ¥. Further, we say ¥, ® € P are disjoint, if Vars(¥) N Vars(®) = (.
Disjointness seems like a strong assumption to make, yet many problem in-
stances we care about in practice use any variable only once. When modeling for
instance a production chain, we want to represent each step in the process by a
unique variable. The reuse of a variable asserts that two steps have exactly the
same distribution, which is hard to guarantee in practice. Therefore, it is not
uncommon for sub-expressions of a problem instance to be pairwise disjoint.

Theorem 2. V&, ¢ € P. disjoint(¥,P) N SAT(V) A SAT(P) — SAT(¥ o P)

This holds since the function Iy U I'g is well-formed due to disjointness, and
solves ¥ o @. Using the above theorem, we can decompose problem instances
where the topmost operation is a binary operator and work on both operands
independently, as long as they are disjoint. Note that this theorem can be applied
recursively, and thus truly is the basis for a divide-and-conquer approach.

Theorem 3. Using only Theorems 1 and 2, we can solve all CCCSAT problems
containing neither nested constraints nor repeated variables.

The above can be shown by structural induction on P. Yet, Theorem 2 only
allows us to decompose until we reach the first constraint operator. To deal with
constraints, additional techniques are required.

Remark 2. To show that ¥ € P is UNSAT, it suffices to show that any of its
sub-expressions is UNSAT. This means while refuting ¥, we are permitted to
check all sub-expressions independently.

— YW, € P. UNSAT(¥) vV UNSAT(&) — UNSAT(¥ o &)
— V& € P. UNSAT(¥) — UNSAT(¥])

Constraint propagation through sequences. The following theorem allows us to
rewrite specific problems involving the sequence operator between four forms.

Theorem 4. For problems ¥,® € P, assignment I' and property p € {E,V}
the following statements are pairwise equivalent:

I'E @p:c-ap:d p=c+d I'= EP:C‘gzj p=c+d
FE VD g|peera I'E ¥lpee. @lp=q

10 A. Bies, H. Hermanns, M. Kohl, A. Schmidt

This follows from the fact that both the mean and variance are cumulative.
The last form gives us an unconstrained sequence operator at the top of the
expression, which potentially allows us to decompose the problem further us-
ing Theorem 2. Once again, this theorem can be applied recursively to push
constraints further into the problem.

Remark 3. Theorem 4 also yields some rejection criteria for CCCSAT problems.
In cases where all three constraints around a sequence operator are given but do
not add up as shown, the problem admits no solutions.

If only two constraints are given, we may still reject the problem if we infer
that the third constraint must be negative, since the mean and variance of PH
distributions are always positive.

Ezample 2. Consider ¥ = X;. Xs|p—5|p—3. Due to Theorem 4, I' F ¥ is equiv-
alent to I' E X1|g—=_2. Xo| g—5, which has no solution.

Choice and parallel are less well-behaved. If the remaining two operators behaved
like the sequence operator (.), i.e., if a theorem similar to Theorem 4 could be
shown for operators choice (4) and parallel (]|), we would be able to push all
constraints to the innermost sub-expressions of a given CCCSAT problem. This
means problems could be broken down recursively until only variable expressions
with constraints remain, which can be easily solved using the methods discussed
in Sec. 4.1. Alas, no such rule exists. We will outline why this is the case here.

Theorem 5. For unknown P,Q € L, E[P + Q], V[P + Q], E[P || Q] and
VI[P || Q] are not fully determined by E[P], V[P], E[Q] and V[Q)].

Counterexamples are easy to find, for instance by setting @ to (2) and com-
paring P = (1).(1/3) and P’ = (1/10) < (2/5)(2/5). Here E[P] = E[P’], and
V[P] = V[P'] hold, but the compound expressions appearing in the theorem
give different values if P is replaced by P’. As a result, we will need to treat the
moments of choice (4) and parallel (||) as completely opaque in this paper.

Remark 4. The above is equivalent to showing that equality of the first two
moments does not yield a congruence relation on Ccc.

PH-equivalence (=pp) on the other hand is a congruence relation for all
operators of Ccc [19] and defined as VP, Q € L. PH(P) = PH(Q) — P ~py Q.
Using [25], two CcC processes are PH-equivalent if and only if their first 2n
moments agree, where n is the order of the larger PH representation.

4.3 Reduction to SMT Instances

We now present a general procedure for solving a CCCSAT problem ¥ € P based
on iteration over template assignments I'y € Var — L[A], i.e., assignments with
rate parameters A € (R>g)? for a template with d parameters to fill in. For each
such template assignment, we present an encoding of the statement I'y F ¥ as
a system of equations to be solved for A by an SMT solver. We show that this
procedure is exhaustive, i.e., guaranteed to find a solution I" for ¥, if one exists,
and that it finds the smallest solution for each variable.

Matching Distributions under Structural Constraints 11

Enumerating assignments. To iterate over template assignments, we need a func-
tion v € N — Var — L[] producing a template assignment I'y € Var — L[A]
in each step ¢ € N. We first construct template generators T € Ny — L[A] and
then discuss how to use them to iterate over template assignments.

For templates, we make use of Coxian distributions because they are canon-
ical forms for general APH distributions, i.e., every APH distribution can be
transformed into a Coxian distribution while preserving its CDF [7]. This allows
us to restrict our search to the set of Coxian distributions without missing out
on possible solutions which guarantees exhaustiveness.

Definition 6. We define the Cozian template generator 7cx € Ny — L[A4] by

Tox(1) = (M), Tox(G+1) = (Agj41) < (A2j) Tex(4)-

While 7¢x covers all APH distributions, the resulting templates 7cx(j) have 25—1
rate parameters A\; to Ag;j_1, so here A € (R>¢)?~1. Our experiments (Sec. 5)
show that the number of rate parameters has a significant impact on SMT solving
time. Hence, we also define the following alternative template generators with
fewer parameters. In contrast to the Coxian generator, using them does, however,
not guarantee exhaustiveness.

Definition 7. We define the Erlang (Tgn), the Hypoezponential (Twypo), and
the Tailweight (1) template generators as follows.

Te (1) = (M), Tea(+1) = (M).TEa())
THypO(l) = (A1), THypO(j +1)= ()‘j—o—l)-THypo(j)
Tw(l) = (M), 71w(2) = (A3) < (A2)(M1), T1w(+2) = (M) 71w (f + 1)

To lift a template generator 7 to a function v € N — Var — L[A] for generating
template assignments, we use linear search thereby starting with the smallest
assignment and working our way upward. Note that for some of the template
generators defined above, there are distributions that can only be represented
using a specific order, i.e. parameter j. Thus, we must consider all possible
combinations of template orders for each variable. Further, we want to choose
the sequence of template assignments such that we find the smallest solution for
each variable first. To this end, we define the following auxiliary function f.

fL ={e}) fNs) = {@) | te f(V—1,5—2)}
x=0

Here, f(N, s) is the set of all tuples NV whose elements sum up to s € N. Now,
we take the tuples from f(|Vars(¥)|,s) for increasing values of s, obtaining a
sequence of tuples with monotonically increasing sums.? Finally, by mapping

4 As the tuples within each set have equal sums, the order in which we linearise each
set when taking tuples is arbitrary.

12 A. Bies, H. Hermanns, M. Kohl, A. Schmidt

every number x in each of the tuple to 7(x 4+ 1), we get our enumeration of
template assignments v € N — Var — L[A].

This algorithm is guaranteed to find the smallest APH distribution for each
variable, but as the set of templates we need to search is countably infinite, the
algorithm diverges if ¥ is UNSAT.

Remark 5. Rather than minimizing the order of templates, i.e., the order of
the Ccc processes substituted for the variables, one may be interested in the
assignment that produces the smallest process once all variables are substituted.
Using [18], the order of CccC processes can be computed recursively.

ord(P.Q) = ord(P) + ord(Q), ord(P + Q) = ord(P) - ord(Q),
ord(P || Q) = ord(P) - ord(Q) 4 ord(P) + ord(Q)

Finding the next tuple in the sequence then amounts to minimizing a multivari-
ate polynomial over the natural numbers while not repeating solutions.

SMT encoding. So far, we defined a linear search function v € N — Var — L[]
which gives us a template assignment I’y = (¢) for every step ¢ in our search.
Now, assuming I'y € Var — L[] is given, we need to encode I'y F ¥ into a
system of equations, which can be solved using an SMT solver. As described
in Sec. 3, this can be done by generating an equation for every occurrence of the
constraint operator (- |) where the left-hand side is the computed moment of
[¥]r, and the right-hand side is a constant given by the constraint. The final
SMT encoding is the conjunction of all generated equations.

To compute the k-th moment of a random variable X ~ PH(d, A), we can
use the equation E(X*) = (—1)"k!&@ A=*1 mentioned in Sec. 2. As remarked
in [25], we can avoid the matrix inverse by computing the first £ moments iter-

atively. First we solve for ﬁl and continue by inductively solving for ﬁk in
hA=-d, frA=—(k+1)b.

In every step, we can compute the k-th moment E(X*) = Ek 1. Since the PH-
representations constructed from CcCC processes are acyclic, A is an upper-
triangular matrix. This means if A is of order n, each Ek can be computed
using backward substitution in O(n?).

5 Empirical Evaluation

We have implemented the methods discussed in Sec. 4 in a prototypical solver for
CccSAT problems, called STRUMPH (Structural Matching of PH-distributions).
The problems we consider are more general than those that can be attacked by
moment matching or phase-type fitting methods (unless constraint are present
on the outermost level only). Therefore no meaningful comparison with existing
tools is possible. This section provides empirical observations of the solution of
STRUMPH on a selection of example problems.

Matching Distributions under Structural Constraints 13

Overview. STRUMPH is a CLI application written in Rust, which takes a prob-
lem instance either in the CCCSAT syntax or a simplified JSON format and
returns a valid assignment to stdout, and stores it as a JSON dictionary. We use
the rsmt2 library to interface with any solver that conforms to the SMT-LIB v2
standard.

The benchmarks in this section have been performed on a desktop PC with
an Intel Core i7-6700K CPU at 4 GHz and 24 GB of RAM running Windows
10. We use the SMT solver z3 [8] as a backend. To measure execution times
of our solver, we use the Measure-Command utility that comes with Powershell.
Executions taking longer than 1 hour were considered as timeout.

Decomposable Cases. The easiest CCCSAT problems for our solver are those
where constraints do not overlap, i.e., every subexpression is part of at most one
constraint. In this case, our implementation can always decompose the problem
until each subproblem only has one constraint, which makes it possible to use
moment matching for each of them.

Ezample 3. The following problem can be solved by decomposing it into three
smaller problems, which are solved independently using moment matching (see
Theorem 1). Our implementation solves this in about 15 ms.

Xl.XQ E=5 H E‘V:3-X4

If a problem does not have any constraints, our implementation outputs the
assignment I" = (1) immediately.

Large sequential problems. In the subset of CCCSAT problems constructed with-
out choice (+) and parallel (||), the solver performs well even on larger problem
instances. For problems with many moment constraints, STRUMPH quickly man-
ages to propagate constraints to the innermost subexpressions which are then
solved by moment matching.

Ezample 4. Our implementation can solve problem ¥ below only using con-
straint propagation and moment matching in about 103 ms.

Uy = Xi|g—2 V:3/2-X2‘E:4‘V:3

Uy =

E‘E:I/Q‘ V:l-X4‘E:5‘ V2. X5|p=2|v=2.X¢

U3 = m‘V:LX&;
¥ = U .Uy U] p—16|v=10

If constraints are too sparse, STRUMPH must resort to SMT solving, but the
SMT instances generated in these cases are easily solved.

E=10\V=5

Ezxample 5. Consider the following CCCSAT problem.

U= X1 X5.X35.X4. X5 X6.X7|v—3.Xs| p—5

https://github.com/kino-mc/rsmt2

14 A. Bies, H. Hermanns, M. Kohl, A. Schmidt

7, 74 24
n ||1]2[3]4]5]6] 7]8]91]2[3[4[5]1]2]3
Erl. |[39 | 75 [117]185|372[534] 639 [812[962[| 39 | 87 |130[4545] - || 42 [148] -
Hypo.|| 41 | 74 |138]268(291|690(2400| - | - || 45 | 72 [121|4436| - || 40 |271]| -
Tail. || 42 | 66 |147|323(462| - | - | - | - || 37| 89 [126] - | - || 41 [158] -
Cox. || 54 [73(344] - | - | - | - | - | - || 38|74 [464] - | - || 47 |169| -

Table 1. Solution times for varying sizes n measured in ms or timeout (-).

When we lower I' £ ¥ into an SMT problem with I'(Xy) = (\g), we get the
following system of equations.

1 1 1 1 1 1 1 1

A A A3 M A A6 A A

LR S WS S N
A AN NN

:37

Using z3, we find the following solution (consistently in roughly 58 ms).
M=M= = =\ =Ag =2, Ao=A3=1

Challenging constraints in sequences. We now turn to synthetic cases that are
meant to pose challenges to the solution engine. We consider the following ex-
ample parametric in n.

Wn - X2~71‘E:n V:n'XZ‘E:rH»l

By construction we know that the smallest solution for ¥, is given by I'(X;) =
Erl(n,1) and I'(X3) = (2). The outer constraint and variable X5 however pre-
vent STRUMPH from decomposing the problem® and solving it within a few
milliseconds. Table 1 shows solution times for ¥,, using different templates. As
we can see, the number of parameters as well as the size of the templates has a
significant impact on the execution times of our solver.

‘We also notice that our solver gets stuck for over an hour on certain problems,
even though it can solve just slightly smaller problems within a few seconds.
After further investigation, we find the z3 SMT solver is quick to reject incorrect
template assignments, but stalls while trying to compute the exact rates for the
correct solution. We believe this is due to the SMT solver internally choosing
the wrong strategy for those cases, yet we had little success figuring out what
causes this behavior or how to prevent it.

Choice & Parallel. To investigate the performance of the other operators, we
repeat the above experiment with two slightly modified versions of ¥,,:

W;z = T1‘E’:n V=n +X2‘E:n/2 W;,/ = T1‘E:n V=n H XQ‘E:n—Q—l

5 Specifically, decomposition fails here because the occurrences of variable X2 makes
the subexpressions of the sequence non-disjoint.

Matching Distributions under Structural Constraints 15

As above, the problem is deliberately constructed as a challenge for the solver.
It must be solved using templates of size at least n, since choice (+) and parallel
(II) do not allow for constraints to be propagated. The smallest solution for X
is Erl(n,1). Table 1 displays the solution times for both ¥/ and ¥/. In both
cases, our implementation reaches the timeout a lot sooner than in the previous
example for most templates. Since choice and parallel quickly result in CTMCs
of higher order, the equations for both mean and variance quickly become more
complex and harder for the SMT solver to handle. We expect that a variety of
tailored strategies can be devised to overcome this. Notably the issue is entirely
absent if parallel processes are decomposable, enabling divide-and-conquer.

6 Conclusion

In this paper, we discussed the problem of finding a PH distribution that fulfils
structural and moment constraints. To formalize the problem, we introduced
CCCSAT, a derivative of the Ccc process calculus. We discussed how to decom-
pose CCCSAT problems into smaller problems, how to transform problems into
one another, and how to apply existing moment matching methods to solve base
cases. This discussion has culminated in the creation of a general semi-decision
procedure, which is guaranteed to find the smallest acyclic solution to any given
problem, if one exists. We presented STRUMPH, a prototypical implementation
of this procedure, and studied its performance on challenging cases.

Future Work. Programs with structural concurrency, such as the one shown
in Lst. 1, can be translated into CCCSAT in a very literal and direct way. We
believe it is possible for this translation to be performed completely automatic,
and this could also interface with benchmarking utilities to infer moment con-
straints. This is especially interesting in the context of Rust, due to its rich type
system and macro support.

The methods for solving CCCSAT problems discussed in this paper assume
moment constraints must be matched exactly. Yet in reality, these constraints
are likely acquired via real-world measurements, which are notoriously inexact.
This leaves room for follow-up work, for instance on a CCCSAT solver which
emphasizes solution size and speed over solution accuracy.

Acknowledgements. This work has received support by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) — project number 389792660
— TRR 248 — CPEC, see https://perspicuous-computing.science.

https://perspicuous-computing.science

16 A. Bies, H. Hermanns, M. Kohl, A. Schmidt
References
1. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the

10.

11.

12.

13.

em algorithm. Scandinavian Journal of Statistics 23(4), 419-441 (1996), http:
//www.jstor.org/stable/4616418

. Bobbio, A., Andras Horvath and Miklés Telek: Matching three moments with min-

imal acyclic phase type distributions. Stochastic Models 21(2-3), 303-326 (2005).
https://doi.org/10.1081/STM-200056210

Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Steady-State Solutions of
Markov Chains, chap. 3, pp. 103-151. John Wiley and Sons, Ltd (1998).
https://doi.org/10.1002/0471200581.ch3

Buchholz, P., Dohndorf, I., Kriege, J.: An online approach to estimate parameters
of phase-type distributions. In: 2019 49th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). pp. 100-111 (June 2019).
https://doi.org/10.1109/DSN.2019.00024

Buchholz, P., Felko, 1., Kriege, J.: Transformation of acyclic phase type distri-
butions for correlation fitting. In: Dudin, A., De Turck, K. (eds.) Analytical and
Stochastic Modeling Techniques and Applications. pp. 96-111. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39408-9_8
Cox, D.R.: A use of complex probabilities in the theory of stochastic processes.
Mathematical Proceedings of the Cambridge Philosophical Society 51(2), 313-319
(1955). https://doi.org/10.1017/S0305004100030231

Cumani, A.: On the canonical representation of homogeneous markov processes
modelling failure-time distributions. Microelectronics Reliability 22(3), 583-602
(1982). https://doi.org/10.1016/0026-2714(82)90033-6

De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 337-340. TACAS’08/ETAPS’08,
Springer-Verlag, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78800-3-24

Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail dis-
tributions to analyze network. Perform. Evaluation 31(3-4), 245-279 (1998).
https://doi.org/10.1016/S0166-5316(97)00003-5

Horvéth, A., Telek, M.: Phfit: A general phase-type fitting tool. In: Field, T.,
Harrison, P.G., Bradley, J.T., Harder, U. (eds.) Computer Performance Evalua-
tion, Modelling Techniques and Tools 12th International Conference, TOOLS 2002,
London, UK, April 14-17, 2002, Proceedings. Lecture Notes in Computer Science,
vol. 2324, pp. 82-91. Springer (2002). https://doi.org/10.1007/3-540-46029-2_5
Horvath, A., Telek, M.: Matching more than three moments with acyclic
phase type distributions. Stochastic Models 23(2), 167-194 (2007).
https://doi.org/10.1080/15326340701300712

Horvath, G.: Moment matching-based distribution fitting with generalized hyper-
erlang distributions. In: Dudin, A.N., Turck, K.D. (eds.) Analytical and Stochastic
Modelling Techniques and Applications - 20th International Conference, ASMTA
2013, Ghent, Belgium, July 8-10, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 7984, pp. 232-246. Springer (2013). https://doi.org/10.1007/978-3-
642-39408-9_17

Johnson, M.A., Taaffe, M.R.: Matching moments to phase distributions: Mixtures
of erlang distributions of common order. Communications in Statistics. Stochastic
Models 5(4), 711-743 (1989). https://doi.org/10.1080/15326348908307131

http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
https://doi.org/10.1081/STM-200056210
https://doi.org/10.1002/0471200581.ch3
https://doi.org/10.1109/DSN.2019.00024
https://doi.org/10.1007/978-3-642-39408-9_8
https://doi.org/10.1017/S0305004100030231
https://doi.org/10.1016/0026-2714(82)90033-6
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/S0166-5316(97)00003-5
https://doi.org/10.1007/3-540-46029-2_5
https://doi.org/10.1080/15326340701300712
https://doi.org/10.1007/978-3-642-39408-9_17
https://doi.org/10.1007/978-3-642-39408-9_17
https://doi.org/10.1080/15326348908807131

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Matching Distributions under Structural Constraints 17

Khayari, R.E.A., Sadre, R., Haverkort, B.R.: Fitting world-wide web request
traces with the em-algorithm. Perform. Evaluation 52(2-3), 175-191 (2003).
https://doi.org/10.1016/S0166-5316(02)00179-7

Komaérkové, Z.: Phase-type approximation techniques (2012), https://is.muni.
cz/th/ysfsq/thesis.pdf, Bachelor Thesis, Masaryk University, Faculty of Infor-
matics

Marie, R.A.: Calculating equilibrium probabilities for A(n)/ck/1/n queues.
In: Proceedings of the 1980 International Symposium on Computer Perfor-
mance Modelling, Measurement and Evaluation. pp. 117-125. PERFORMANCE
’80, Association for Computing Machinery, New York, NY, USA (1980).
https://doi.org/10.1145/800199.806155

Neuts, M.F.: Probability distributions of phase type. Liber Amicorum Prof. Emer-
itus H. Florin (1975)

Neuts, M.F.: Matrix-geometric solutions in stochastic models: An al-
gorithmic approach. The Johns Hopkins University Press (1981).
https://doi.org/10.1002/net.3230130219

Pulungan, M.R.: Reduction of Acyclic Phase-Type Representations. Ph.D. thesis,
Saarland University (2009). https://doi.org/10.22028,/D291-25951

Pulungan, R., Hermanns, H.: A construction and minimization service for contin-
uous probability distributions. Int. J. Softw. Tools Technol. Transf. 17(1), 77-90
(2015). https://doi.org/10.1007/s10009-013-0296-8

Reinecke, P., Krauf}, T., Wolter, K.: Phase-type fitting using hyperstar. In: Bal-
samo, M.S., Knottenbelt, W.J., Marin, A. (eds.) Computer Performance Engineer-
ing - 10th European Workshop, EPEW 2013, Venice, Italy, September 16-17, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8168, pp. 164—-175. Springer
(2013). https://doi.org/10.1007/978-3-642-40725-3_13

Telek, M., Horvath, G.: A minimal representation of markov arrival processes and
a moments matching method. Perform. Evaluation 64(9-12), 1153-1168 (2007).
https://doi.org/10.1016/j.peva.2007.06.001

Thiimmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting
with the EM algorithm. IEEE Trans. Dependable Secur. Comput. 3(3), 245-258
(2006). https://doi.org/10.1109/TDSC.2006.27

Tijms, H.C.: Stochastic models : an algorithmic approach. John Wiley & Sons,
New York (1994)

Wolf, V.: Equivalences on Phase Type Processes. Ph.D. thesis, University of
Mannheim (2008), https://madoc.bib.uni-mannheim.de/1911/

https://doi.org/10.1016/S0166-5316(02)00179-7
https://is.muni.cz/th/ysfsq/thesis.pdf
https://is.muni.cz/th/ysfsq/thesis.pdf
https://doi.org/10.1145/800199.806155
https://doi.org/10.1002/net.3230130219
https://doi.org/10.22028/D291-25951
https://doi.org/10.1007/s10009-013-0296-8
https://doi.org/10.1007/978-3-642-40725-3_13
https://doi.org/10.1016/j.peva.2007.06.001
https://doi.org/10.1109/TDSC.2006.27
https://madoc.bib.uni-mannheim.de/1911/

	Matching Distributions under Structural Constraints

