
Automated Fault Tree Generation
for Rust Programs

Dominic Zimmer
Saarland University

Saarland Informatics Campus
dominic.zimmer@cs.uni-saarland.de

Andreas Schmidt
Saarland University

Saarland Informatics Campus
andreas.schmidt@cs.uni-saarland.de

Abstract—With software driving more and more of our world,
dependability assurance becomes increasingly essential. While
safe-by-design is desirable, there are always failure conditions that
cannot be avoided and must be handled (or deemed acceptable
in review). However, this requires awareness and explicitness of
failure conditions as well as their impact on the overall system.
Fault trees are commonly used in dependability assurance, up
to the point that their creation and properties are mandated
by safety standards. As of today, these documents are created
manually by safety engineers—a process that lacks traceability
between the software source code and associated fault trees.

Recent advances in programming languages have led to
stronger type systems and more modern ways to express failure
conditions. One example is the Rust language, which uses
monadic types to make potential failures explicit. In this paper,
we present our tool craft, which uses static program analysis
to generate fault trees of functions for a subset of the Rust
language. We showcase both capabilities as well as limitations
of our approach and give directions for future work.

Index Terms—fault trees, qualitative, dependability, Rust

I. INTRODUCTION & BACKGROUND

We investigate how traditional formal models for safety-
critical systems can be automatically generated for software
systems written in modern languages.

A. Fault Trees

A widely established toolkit to analyze safety-critical sys-
tems are fault trees [1], [2]. Fault trees relate the failure of
a system to the failure of its individual components in terms
of boolean connectives, all the way down to so-called basic
events. Basic events typically describe individual faults, that
is failures of small components of a system in terms of a
Poisson distribution that captures the expected time-to-fail of
the component. Used by the largest organizations for safety-
critical systems, such as NASA [3], fault trees enjoy support
by numerous analysis tools [2] and serve as a fundamental
formalism to express different dependability aspects of critical
systems [4], [5].

Typically, fault trees are constructed automatically [6], [7]
from system models or generated from failure reports obtained
by profiling a safety-critical system. In systems where failure
is catastrophic, it can be difficult or unreasonable to obtain
even approximates for the desired failure conditions. Manually
describing a system’s structure as a fault tree, however, is
prone to human errors introduced when modelling the system.

While fault trees have been widely (and successfully) em-
ployed for hardware, the focus of our work are software
programs. This implies that—unless an abstract model of soft-
ware systems [8] is considered—we are mostly interested in a
system’s qualitative failure structure, rather than in quantitative
measures that are near impossible to obtain for software [9]. To
the best of our knowledge, there are no static analysis tools
available that automatically generate fault trees for software
from their source code. We want to address this lack of tooling
and framework and shine light into the widely unexplored
corner of automatically generated program fault trees and
qualitative analysis thereof.

B. Dependable Software and Rust

While our approach is applicable to many modern program-
ming languages, the focus of our work is on Rust. With both
academical research (e.g. RustBelt [10]) as well as industrial
activities (e.g. Ferrocene1), Rust is foreseen to become an
addition to the limited set of language ecosystems suitable
for development of dependable and efficient software. Besides
the guarantees provided by Rust’s unique ownership system,
it serves as a modern, high-level language that is starting to
get more support every day, e.g. in the Linux kernel.2

Rust’s failure (or exception) handling is different to most
imperative programming languages used in critical soft-
ware (e.g. C). These languages express failure implicitly
by functions throwing exceptions (or returning well-known
values) of which a calling function may decide to catch
some—whilst rethrowing others. Rust makes the possibility
of failure explicit in its type system by widely supporting
Result<T, E> types. In Rust, a Result is either a value
Ok(t: T) or an error Err(e: E)—both being variants of
the same enumeration. The explicit usage of Results in the
type system make Rust more explicit and verbose with respect
to the fallibility of individual components: A developer writing
a function f that calls a fallible function g (i.e. a function that
returns a Result) must explicitly make a decision what to
do with the result of g in both cases of Ok(v) and Err(e).
If desirable, the #[must_use] attribute can be used to issue
a diagnostic compiler warning in case a result is ignored,

1https://github.com/ferrocene
2https://lwn.net/Articles/908347/

https://github.com/ferrocene
https://lwn.net/Articles/908347/

enum Option<T> {
Some(T),
None,

}

enum Result<T,E> {
Ok(T),
Err(E),

}

Fig. 1. Recoverable failures are typically represented using either of the two
standard library types Option or Result.

encouraging the developers to make an explicit decision what
to do with the result.

C. Contribution

The contributions of this paper are threefold:
1) We propose a qualitative failure abstraction for a subset

of Rust programs.
2) We implement this abstraction in a prototypical tool that

automatically extracts fault trees from Rust code.
3) We discuss future work, particularly outlining the idea of

future extensions to our fault trees and analyses.

II. CONCEPT

A. Types of Failures

Our tool craft is aimed at analyzing when Rust programs
can recoverably fail.3 Recoverable failure in Rust is typically4

encoded in the return type, using either of the two container
types Option<T> or Result<T,E> defined in Fig. 1. We
say that a variable of type Option<T> or Result<T,E>
fails, if it is constructed using the None or Err(e) construc-
tor, respectively. Thereby, we only discriminate failure from
non-failure, ignoring possible information about the fault that
the Err(e) constructor might bear. Consequently, for the
purpose of this work, we will from now on treat values of
type Option<T> and Result<T, ?> equally and without
loss of generality talk about Option<T> and its constructors
Some(t: T) and None, assuming that the same conceptual
work would apply to Result<T, ?>.

B. Failures and Fault Trees

In order to qualitatively analyze the failure (i.e. the return
of a non-Some value) of a single component (i.e. a program),
we relate its failure to the failures of subordinate components
of the program using static fault trees. Fault trees are trees
bearing (failure) events as leaf nodes, and boolean connectives
as intermediate nodes. We use green circles as leaf nodes
to depict basic events that might fail. Beige boxes are used
to insert names of intermediate events anywhere in the tree,
allowing us to easily refer to subtrees. Blue triangles at root
(leaf) position of a fault tree depict transfer-out (-in) gates,
allowing composition of fault trees along transfer-in and -out
gates. The root node of a fault tree describes the failure of the
entire component as a boolean connective consisting of basic
events, transfer gates, ∧, ∨, and ¬. By supporting negations
of events, our fault trees typically belong to the fragment of
non-coherent fault trees [11].

3Recoverable failure refers to the program execution being able to recover
from individual failures, not that the failure could be un-done

4Mutably borrowed Result arguments are possible, but uncommon.

fn read_int() -> Option<i32> { ... }

fn read_int_or_default(x: Option<i32>)
-> Option<i32> {

read_int().or(Some(0))
}

Fig. 2. Failure of the function fn read_int_or_default() is related
to the failure of the callee read_int().

In the scope of static code analysis for Rust, basic events
are expressions and functions whose type (or return type) are
fallible data types. We want to express the failure of a function
in terms of (a) failure of its arguments, (b) failure of nested
function calls, and in terms of (c) failure of expressions.

III. AUTOMATED FAULT TREE EXTRACTION

A. Motivational Example

Using the example given in Fig. 2, we motivate the ap-
proach of our tool by first manually and intuitively analyz-
ing the system. The function read_int_or_default()
uses the function Option::or to combine the results of
read_int() and Some(0) into one value. Option::or
only fails, if both of its arguments fail, in this case the
results of read_int() and Some(0). We can express this
observation in the language of fault trees as shown in Fig. 3.
Obviously, subsequent fault tree analysis will show that the
component fn read_int_or_default() cannot fail.

fn read_int_or_default()

fn read_int() Some(0)

∧

Fig. 3. The fault tree expressing the possible failures of
fn read_int_or_default() from Fig. 2 in terms of failure of
its function calls to fn read_int() and Some(0).

Using the same intuition used to derive the fault tree in
Fig. 3, we will develop a failure abstraction for a subset of Rust
programs, allowing us to automatically generate fault trees
from Rust code, formalizing how a function can fail.

B. Failure Abstraction

We implement static analysis of Rust programs using two
functions defined on the set of Rust expressions Expr. Let F ∶
Expr → FT be the failure function that assigns an expression
e a fault tree F(e) overapproximating the expression’s failure.
Furthermore let T ∶ Expr → Ty be the function that assigns
every expression e its type t ∈ Ty, as it would be inferred by
the Rust compiler.

We now briefly discuss the fault tree abstraction given to
the most interesting Rust language constructs covered:

Expressions Since we are only concerned with fallible ex-
pressions, we define the failure of any non-fallible expression

e (that is T (e) ≠ Option<T>, for some T) as F(e) = false.
Furthermore, in the absence of symbolic analysis techniques,
and if none of the following rules yield further insight, we
overapproximate an expression’s failure to be F(e) = true.

Functions The most fundamental building blocks of the
fault trees we generate are fallible functions, i.e. functions
returning Option<T>. We want to relate the failure of a
function call f(a1, . . . , am) to the failure of its arguments
a1, . . . , am and the structure of the function itself. In the
resulting fault trees, we represent fallible function arguments
by transfer-in gates.

We overapproximate the failure of a function by the fact
that, for the function application to fail, some return location of
the function must have failed. Without extensive control flow
analysis, we cannot statically decide which return statement
caused the function to fail, so we approximate the failure
F(f) = ⋁iF(ri) where r1, . . . , rn are the return and tail
expressions of the function body.

Function applications are either abstracted as a) instantia-
tions of a fault tree by substituting its transfer-in gates by the
roots of the arguments’ fault trees, or as b) basic events that
are to be included as part of the final analysis, e.g. fn foo()
in Fig. 5.

If / Match Expressions As for control flow within func-
tions, we cannot generally, statically infer, but must over-
approximate the failure of if and match expressions. Let
e1, . . . , en be the corresponding branches of the if-expression
or match arms of the match-expression. For such an expres-
sion e, we approximate its failure as F(e) = ⋁iF(ei).

In the case of a match expression m = match x {...},
where the matched variable x is of fallible type, we obtain
a more granular analysis: Let eS and eF be the match arms
corresponding to the success and failure constructors of x,
respectively. We can then define F(m) = (F(x) → F(eF)) ∧
(¬F(x) → F(eS)), capturing the essence of the if-then-else
operator.

Well-Known Functions Instead of conducting a repetitive
fault tree analysis for all encountered functions, craft uses a
lookup table of well-known functions, including many mem-
ber functions of the namespace std::option::Option
of the Rust standard library. For example, we can identify
std::option::Option::map(o, ●) with the identity
function on o, as map preserves the Some-ness and None-
ness of any Option value. Similarly, the family of com-
binators covered by the standard library lets us identify
std::option::Option::or with logical conjunction on
fault trees. Most notably, we associate the Option<T> con-
structors Some and None with false and true, respectively.

C. Example

Let the function fn foo() -> Option<i32> and vari-
able x: Option<i32> denote basic events, in relation
to which we want to express the failure of the func-
tion fn combine() depicted in Fig. 4. fn combine()
has a single return location: the immediate tail expres-
sion or(x, map(foo(), |s| s + 1)). The functions

fn combine(x: Option<i32>)
-> Option<i32> {

x.or(
foo().map(|s| s + 1)

)
}

Fig. 4. A small rust program, in which the failure of fn combine() is to
be related to its argument x and subordinate function call to fn foo()

fn combine()

std::option::Option::or

x: Option<i32> std::option::Option::map

fn foo()

∧

Fig. 5. The fault tree expressing the possible failures of fn combine()
from Fig. 4 in terms of failure of its argument x and the call to fn foo().

or and map can be statically identified to be meth-
ods of the std::option::Option enum and are thus
subject to simplifications of well-known functions. As
shown in the fault tree in Fig. 5, we can express
the failure of fn combine() in terms of the failure
of its argument x and the failure of fn foo(). The
intermediate events std::option::Option::or and
std::option::Option::map show the partial compila-
tion results from individual function calls to subordinate fault
trees. Using the blue transfer-in and -out gates, we can connect
fault trees resulting from compilation of subexpressions to
existing fault trees, linking function composition in Rust to
composition of fault trees.

D. Implementation

The foundation of our static analysis tool is
rust-analyzer [12], the currently best maintained
compiler frontend for Rust, which provides a stable API
and tools from syntax parsing to type checking. Using
rust-analyzer to obtain the program’s abstract syntax
tree, we structurally generate fault trees during traversal.

IV. DISCUSSION

Authorities concerned with safety, e.g. TÜV [13], suggest
fault trees to assess when a system is expected to fail. The
literature is abundant with fault trees describing the risks
of physical systems, though our literature research showed
that fault trees have been largely undiscussed for program

failures. Outlining how fault trees can be used to express the
recoverable failures of individual functions of a code base,
we laid the cornerstone towards a novel framework allowing
safety assessment of software systems by the developer.

Contrary to the recoverable failures expressed as elements
of the type Result<T, E>, Rust also features irrecoverable
failures: panic!s. A thread panic!s, signalling it has run
into an unintended state from which recovery is impossible,
initiating termination. Contrary to recoverable failures, numer-
ous tools to detect irrecoverable failures are readily available,
e.g. rustig!5 and no-panic.6

A. Limitations

As the aim of our analysis is the detection of recoverable
failures, we assume the programs analyzed by craft to be
panic!-free. Moreover, the language fragment covered by
our prototypical tool is restricted to macro and loop free
Rust programs.

As of now, our approach is limited by the fact that the fault
trees we generate significantly overapproximate the failure
of function returns and if expressions. To refine their
abstractions, control flow analysis needs to be integrated
into our tool, enabling more insight into the interplay of a
function’s failure and its arguments’ failures.

B. Future Work

As discussed previously, we want to express failure of
functions returning Option<T> in terms of their arguments.
When discussing well-known functions, we have seen that to
a degree, this idea is applicable to higher-order functions such
as map(self: Option<T>, f: F) -> Option<U>
whose type signature expects an infallible function
F: FnOnce(T) -> U. Hence, we could express the
failure of map in terms of its lone fallible, first argument. To
generate fault trees for higher-order fallible functions whose
arguments are themselves fallible functions (e.g. and_then
only differs in F: FnOnce(T) -> Option<U> from
map), a notion of higher-order fault trees supporting function
application needs to be developed. As a result, more
higher-order function failures could be analyzed.

Moreover, once failure analysis of a function has been
conducted, it needs not be computed again until the function
changed. As soon as this project is mature enough, we plan to
store conducted failure analyses in a central, versionized plat-
form, for example in ClearlyDefined.7 By granting easy access
to failure analysis results, we can facilitate the development
of safe software, generating demand for tooling, such as IDE
support for safety analyses.

Through means of traditional program analysis tech-
niques, we plan to include approximative analysis of loops
in craft. Furthermore, using symbolic execution we in-
tend to provide more explicit failure conditions, such as

5https://github.com/Technolution/rustig
6https://github.com/dtolnay/no-panic
7https://clearlydefined.io/

rhs == 0 in the case of the fallible safe division function
fn checked_div(self: i32, rhs: i32).

V. CONCLUSION

In this work, we present an automated procedure to generate
fault trees from Rust source code. Through qualitative analysis
of non-coherent fault trees, explicit failure conditions for the
failing of Rust functions can be obtained. We implement our
approach in a prototypical tool written in Rust, employing the
established rust-analyzer library.

Future work is needed to address current issues regarding
the embedding of control flow into our model.

ACKNOWLEDGMENT

This research is supported by the German Research Foun-
dation (DFG) grant 389792660 as part of TRR 248 – CPEC
(see https://perspicuous-computing.science). Additionally, it
is supported as part of STORM SAFE, an Interreg project
supported by the North Sea Programme of the European
Regional Development Fund of the European Union.

REFERENCES

[1] S. Kabir, “An overview of fault tree analysis and its application in model
based dependability analysis,” Expert Syst. Appl., vol. 77, pp. 114–135,
2017. [Online]. Available: https://doi.org/10.1016/j.eswa.2017.01.058

[2] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey
of the state-of-the-art in modeling, analysis and tools,” Computer
Science Review, vol. 15-16, pp. 29–62, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013715000027

[3] P. N. Scientific and T. Information, “Fault tree analysis - a bibliography,”
2000. [Online]. Available: https://api.semanticscholar.org/CorpusID:
59640969

[4] K. J. Sullivan, J. B. Dugan, and D. Coppit, “The galileo fault tree
analysis tool,” Digest of Papers. Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing (Cat. No.99CB36352), pp.
232–235, 1999. [Online]. Available: https://api.semanticscholar.org/
CorpusID:15870778

[5] W. Vesely, Fault Tree Handbook, ser. NUREG-0492. Systems
and Reliability Research, Office of Nuclear Regulatory Research,
U.S. Nuclear Regulatory Commission, 1981. [Online]. Available:
https://books.google.de/books?id=JXX9vgEACAAJ

[6] C. E. Dickerson, R. Roslan, and S. Ji, “A formal transformation method
for automated fault tree generation from a UML activity model,”
IEEE Trans. Reliab., vol. 67, no. 3, pp. 1219–1236, 2018. [Online].
Available: https://doi.org/10.1109/TR.2018.2849013

[7] F. Mhenni, N. Nguyen, and J.-Y. Choley, “Automatic Fault Tree Gen-
eration from SysML System Models,” in IEEE/ASME International
Conference on Advanced Intelligent Mechatronics, AIM, Jul. 2014.

[8] J. Parri, S. Sampietro, and E. Vicario, “FaultFlow: a tool supporting an
MDE approach for Timed Failure Logic Analysis,” in 17th European
Dependable Computing Conference, EDCC 2021, Munich, Germany,
September 13-16, 2021. IEEE, 2021, pp. 25–32. [Online]. Available:
https://doi.org/10.1109/EDCC53658.2021.00011

[9] N. G. Leveson, Safeware - system safety and computers: a guide to
preventing accidents and losses caused by technology. Addison-Wesley,
1995.

[10] R. Jung, J. Jourdan, R. Krebbers, and D. Dreyer, “Rustbelt: securing the
foundations of the rust programming language,” Proc. ACM Program.
Lang., vol. 2, no. POPL, pp. 66:1–66:34, 2018. [Online]. Available:
https://doi.org/10.1145/3158154

[11] J. D. Andrews, “The use of not logic in fault tree analysis,” Quality and
Reliability Engineering International, vol. 17, no. 3, pp. 143–150, 2001.

[12] “rust-analyzer,” https://rust-analyzer.github.io/, accessed: 2023-09-19.
[13] “Functional safety of electrical/electronic/programmable electronic

safety-related systems - part 1: General requirements,” International
Electrotechnical Commission, Geneva, CH, Standard ISO/IEC
TR 61508-1:2010, 2010. [Online]. Available: https://www.iec.ch/
functional-safety

https://clearlydefined.io/
https://perspicuous-computing.science
https://doi.org/10.1016/j.eswa.2017.01.058
https://www.sciencedirect.com/science/article/pii/S1574013715000027
https://api.semanticscholar.org/CorpusID:59640969
https://api.semanticscholar.org/CorpusID:59640969
https://api.semanticscholar.org/CorpusID:15870778
https://api.semanticscholar.org/CorpusID:15870778
https://books.google.de/books?id=JXX9vgEACAAJ
https://doi.org/10.1109/TR.2018.2849013
https://doi.org/10.1109/EDCC53658.2021.00011
https://doi.org/10.1145/3158154
https://rust-analyzer.github.io/
https://www.iec.ch/functional-safety
https://www.iec.ch/functional-safety

	Introduction & Background
	Fault Trees
	Dependable Software and Rust
	Contribution

	Concept
	Types of Failures
	Failures and Fault Trees

	Automated Fault Tree Extraction
	Motivational Example
	Failure Abstraction
	Example
	Implementation

	Discussion
	Limitations
	Future Work

	Conclusion
	References

